首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2549篇
  免费   212篇
  国内免费   168篇
  2023年   46篇
  2022年   39篇
  2021年   74篇
  2020年   84篇
  2019年   101篇
  2018年   69篇
  2017年   74篇
  2016年   90篇
  2015年   108篇
  2014年   82篇
  2013年   167篇
  2012年   88篇
  2011年   108篇
  2010年   85篇
  2009年   104篇
  2008年   112篇
  2007年   98篇
  2006年   110篇
  2005年   91篇
  2004年   99篇
  2003年   82篇
  2002年   84篇
  2001年   97篇
  2000年   95篇
  1999年   66篇
  1998年   68篇
  1997年   60篇
  1996年   47篇
  1995年   54篇
  1994年   45篇
  1993年   50篇
  1992年   30篇
  1991年   36篇
  1990年   28篇
  1989年   28篇
  1988年   30篇
  1987年   30篇
  1986年   15篇
  1985年   26篇
  1984年   30篇
  1983年   16篇
  1982年   13篇
  1981年   7篇
  1980年   11篇
  1979年   6篇
  1978年   7篇
  1977年   8篇
  1975年   6篇
  1974年   7篇
  1973年   7篇
排序方式: 共有2929条查询结果,搜索用时 46 毫秒
81.
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.  相似文献   
82.
83.
Crop evolution is a long‐term process involving selection by natural evolutionary forces and anthropogenic influences; however, the genetic mechanisms underlying the domestication and improvement of fruit crops have not been well studied to date. Here, we performed a population structure analysis in peach (Prunus persica) based on the genome‐wide resequencing of 418 accessions and confirmed the presence of an obvious domestication event during evolution. We identified 132 and 106 selective sweeps associated with domestication and improvement, respectively. Analysis of their tissue‐specific expression patterns indicated that the up‐regulation of selection genes during domestication occurred mostly in fruit and seeds as opposed to other organs. However, during the improvement stage, more up‐regulated selection genes were identified in leaves and seeds than in the other organs. Genome‐wide association studies (GWAS) using 4.24 million single nucleotide polymorphisms (SNPs) revealed 171 loci associated with 26 fruit domestication traits. Among these loci, three candidate genes were highly associated with fruit weight and the sorbitol and catechin content in fruit. We demonstrated that as the allele frequency of the SNPs associated with high polyphenol composition decreased during peach evolution, alleles associated with high sugar content increased significantly. This indicates that there is genetic potential for the breeding of more nutritious fruit with enhanced bioactive polyphenols without disturbing a harmonious sugar and acid balance by crossing with wild species. This study also describes the development of the genomic resources necessary for evolutionary research in peach and provides the large‐scale characterization of key agronomic traits in this crop species.  相似文献   
84.
Sunburn is a physiological disorder that can be observed in fruits of several crops growing in areas with warm climates, as a result of photodamage due to an excess of heat and/or light irradiance (visible and ultraviolet light). The main cause is thought to be an increase in reactive oxygen species production which causes oxidative damage due to the incapacity of the fruit to recover from stress. This can result in a characteristic morphological and structural phenotype unacceptable to consumers, leading to severe losses in productivity for farmers. Fruits have a great array of mechanisms to mitigate or reduce reactive oxygen species production and the inactivation of photosynthetic apparatus, such as enhanced xanthophyll cycle-dependent energy dissipation, accumulation of photoprotective pigments and heat-shock proteins, and the biosynthesis of antioxidants, among others. Nevertheless, these mechanisms become inefficient when the stress factors altering the fruit surface exceed a certain threshold (of both duration and intensity). Although this disorder has been studied in detail and previous efforts have provided significant advances in understanding the underlying mechanisms causing sunburn in a number of fruits, further research is still needed. This will undoubtedly provide new approaches and tools for improving current mitigation strategies.  相似文献   
85.
Oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly polyphagous fruit fly which, in the last 15 years, has invaded (with or without establishment) Africa, Europe and North America. As a direct result of these invasions, there is increasing research interest in the invasion history and spread patterns of this fly. A statement being repeatedly used in the B. dorsalis invasion literature is that the species was first identified from Taiwan in 1912 and that it subsequently spread through South‐East and South Asia during the 20th century. This assumption is incorrect and stems from: (a) an incomplete knowledge of B. dorsalis taxonomic history; and (b) a confounding of first taxonomic record with first invasion record. Rather than being first detected in Taiwan in 1912, the first record of oriental fruit fly was from “East India” (India orientali) under the synonymous name of Musca ferruginea by Fabricius in 1794, and in the 1910s, it was known not only from Taiwan, but widely across tropical Asia with records from India, Burma, Bengal, Sri Lanka (as Ceylon), Singapore and Indonesia (multiple islands). The taxonomic literature is very clear that oriental fruit fly has not invaded the rest of Asia from Taiwan since 1912, and this error should not continue to be repeated in the literature.  相似文献   
86.
Almond trees are one of the most important crops in the Balearic Islands. The pollination of almonds is limited to the activity of insects, and cross‐pollination is necessary for fruit development. Currently, honey bees and wild bee populations are declining considerably due to multiple causes, such as the use of pesticides, diseases and habitat loss. An alternative to increase the almond production is the use of commercial pollinators. In this long‐term (3 years) study, the effect of the introduction of Bombus terrestris colonies on almond production was evaluated in two orchards. Two experimental designs were carried out to study the best management of this pollinator. For 2 years, all bumble bee colonies were placed in the middle of the plot and during the last year, the bumble bee colonies were distributed homogenously in the plot. Fruit set and the foraging behaviour of bumble bees during the blossoming period was determined, and the effect of different environmental variables on the visitation rate of bumble bees was assessed by means of a generalized linear mixed model (GLMM). Moreover, for the first time, the spatial distribution of fruit set was evaluated. Our results show that fruit set was significantly higher in the fields where B. terrestris had been introduced than in the control plots. This increased production resulted in a positive economic balance for the farmer. Moreover, bumble bees showed to prefer trees in a southwest orientation that were close to their colony. The activity of bumble bees showed to be significantly influenced by wind speed (the higher the speed the more flowers are visited by B. terrestris) and time after flowering (visitation rate decreased with days after flowering). In order to improve its management and obtain the highest possible almond production, it is important to understand the activity and behaviour of this pollinator.  相似文献   
87.
Sambucus javanica is a perennial herb with extrafloral nectaries (EFNs) on its inflorescences. To explore the ecological functions of EFNs, a factorial combination experiment of ant (access or exclusion) and EFNs (with or without) at the plant level was created in two populations. The role of EFNs in the attraction of ants and flying pollinators, the defensive role of ants against foliar herbivores, the effects of ants on pollinator visitation and the effects of ant–pollinator interactions on fruit production in one or both populations were assessed. Ants were common on the ant-access plants with EFNs, but absent from the ant-access plants without EFNs. Foliar herbivory was independent of ant and EFN treatments and their interactions. The visitation frequency of flying pollinators (honeybees and syrphid flies) and fruit set were significantly higher for plants with EFNs than plants without EFNs, but were not affected by ant treatments or their interactions with EFN treatments. These results suggest that EFNs in S. javanica attracted both ants and flying pollinators, but ants did not present a defensive role against herbivores, did not deter flying pollinators from visiting inflorescences and had no effects on fruit production. In addition, ants were not significant pollen vectors.  相似文献   
88.
The invasive cherry vinegar fly, Drosophila suzukii, has been identified in Europe as a destructive fruit pest since its arrival in 2008. In the present laboratory study, three predatory insects (Orius majusculus, Chrysoperla carnea, and Forficula auricularia) naturally occurring on fruit crops in Europe were investigated for their ability to attack and feed on D. suzukii within and outside fruits. The predators were provided with various D. suzukii life stages (eggs, larvae, pupae or adults) exposed or within infested cherries. The anthocorid bug O. majusculus fed on eggs and larvae, but was not able to attack pupae. Larvae of the lacewing C. carnea preyed upon D. suzukii eggs, larvae and pupae and also captured adult flies. The European earwig F. auricularia was the most voracious predator of these three tested species. Although the earwigs were not able to catch adult flies, they readily preyed upon every other developmental stage. Adult O. majusculus or third instar larvae of C. carnea significantly reduced the offspring of D. suzukii from infested cherries, when these contained the egg stage of the pest. None of the predators were able to attack early larval stages inside the cherries. But pupae that protruded from the fruit epicarp or that had pupated outside the fruit were accessible to lacewing larvae and earwigs and significantly reduced by them. Orius bugs, lacewing larvae and earwigs were able, under laboratory conditions, to capture and prey upon various life stages of the invasive pest, if not completely concealed inside the fruit. Our findings suggest that these generalist predators may have some control capacity on infested fruit in cultivated fruit crops and also in non‐crop habitats.  相似文献   
89.
Spotted‐wing drosophila, Drosophila suzukii (Matsumura), is an invasive pest affecting fruit production in many regions of the world. Insecticides are the primary tactic for controlling D. suzukii in organic as well as conventional production systems. Organic growers have a greater challenge because fewer insecticides are approved for use in organic agriculture. The most effective organically approved product is spinosad, but alternatives are needed because of label restrictions limiting the number of applications per year, toxicity to beneficial arthropods and the risk of developing resistance. We evaluated several organically approved insecticides against D. suzukii in laboratory assays and field trials conducted on organic blueberry and raspberry farms. Spinosad was consistently the most effective insecticide, but a few other insecticides such as azadirachtin + pyrethrins, Chromobacterium subtsugae and sabadilla alkaloids showed moderate activity. None of the treatments had long residual activity. Mortality started to decline by 3 days after treatment, and by 5 days after application, the treatments were not different from the controls. These products may be useful in rotation programmes, necessary for reducing reliance on spinosad and mitigating resistance. Cultural and biological control approaches are needed in fruit production for D. suzukii management, but insecticides will likely continue to be the dominant management tactic while these other approaches are being optimized and adopted.  相似文献   
90.
The genetic mechanisms underlying fruit development have been identified in Arabidopsis and have been comparatively studied in tomato as a representative of fleshy fruits. However, comparative expression and functional analyses on the bHLH genes downstream the genetic network, ALCATRAZ (ALC) and SPATULA (SPT), which are involved in the formation of the dehiscence zone in Arabidopsis, have not been functionally studied in the Solanaceae. Here, we perform detailed expression and functional studies of ALC/SPT homologs in Nicotiana obtusifolia with capsules, and in Capsicum annuum and Solanum lycopersicum with berries. In Solanaceae, ALC and SPT genes are expressed in leaves, and all floral organs, especially in petal margins, stamens and carpels; however, their expression changes during fruit maturation according to the fruit type. Functional analyses show that downregulation of ALC/SPT genes does not have an effect on gynoecium patterning; however, they have acquired opposite roles in petal expansion and have been co‐opted in leaf pigmentation in Solanaceae. In addition, ALC/SPT genes repress lignification in time and space during fruit development in Solanaceae. Altogether, some roles of ALC and SPT genes are different between Brassicaceae and Solanaceae; while the paralogs have undergone some subfunctionalization in the former they are mostly redundant in the latter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号